Cara 2 Pembahasan Invers Fungsi SBMPTN 2016 Matematika Dasar kode 347

Soal yang Akan Dibahas
Jika fungsi $ f $ dan $ g $ mempunyai invers dan memenuhi $ f(x + 2) = g(x-3) $, maka $ f^{-1}(x) = .... $
A). $ g^{-1}(x) + 5 \, $ B). $ g^{-1}(x + 5) \, $
C). $ g^{-1}(5x) \, $ D). $ g^{-1}(x-5) \, $
E). $ g^{-1}(x) - 5 $

$\spadesuit $ Konsep Dasar Fungsi Invers
*). Definisi Fungsi Invers
$ f(A) = B \leftrightarrow A = f^{-1}(B) $

$\clubsuit $ Pembahasan
*). Pada soal diketahui : $ f(x + 2) = g(x-3) $
Kita Misalkan $ f(x + 2) = g(x-3) = p $
Sehingga :
$ f(x + 2) = p \rightarrow x + 2 = f^{-1}(p) \, $ atau $ f^{-1}(p) = x + 2 \, $ ...(i)
$ g(x-3) = p \rightarrow x - 3 = g^{-1}(p) \rightarrow x = g^{-1}(p) + 3 \, $ ...(i)
*). Substitusi (ii) ke (i) :
$ \begin{align} f^{-1}(p) & = x + 2 \\ f^{-1}(p) & = g^{-1}(p) + 3 + 2 \\ & = g^{-1}(p) + 5 \end{align} $
Bentuk $ f^{-1}(p) = g^{-1}(p) + 5 \, $ sama saja dengan $ f^{-1}(x) = g^{-1}(x) + 5 $.
Jadi, kita peroleh $ f^{-1}(x) = g^{-1}(x) + 5 . \, \heartsuit $


Tidak ada komentar:

Posting Komentar

Catatan: Hanya anggota dari blog ini yang dapat mengirim komentar.