Soal dan Pembahasan UM UGM Matematika IPA tahun 2016 Kode 581


Nomor 1
Diketahui titik $(1,p)$ berada pada lingkaran $ x^2 + y^2 - 2y = 0 $. Persamaan lingkaran dengan pusat $(1,p)$ dan menyinggung garis $ px+y= 4 \, $ adalah ....
A). $ x^2 + y^2 -2x - 2y - 2 = 0 \, $
B). $ x^2 + y^2 -2x - 2y - 1 = 0 \, $
C). $ x^2 + y^2 -2x - 2y = 0 \, $
D). $ x^2 + y^2 -2x + 2y - 2 = 0 \, $
E). $ x^2 + y^2 -2x + 2y - 1 = 0 $
Nomor 2
Jika $ 0 < x < \frac{\pi}{2} \, $ dan $ \, 2\sin ^2 x + \cos ^2 x = \frac{34}{25} , \, $ maka nilai $ \tan x = .... $
A). $-\frac{3}{4} \, $ B). $ -\frac{3}{5} \, $ C). $ \frac{3}{4} \, $ D). $ \frac{3}{5} \, $ E). $ \frac{4}{5} $
Nomor 3
Diketahui vektor $\vec{OA} = (1, \, 2) \, $ dan $ \vec{OB}=(2, \, 1)$. Jika titik P terletak pada AB sehingga AP:PB=1:2, maka panjang vektor $\vec{OP} \, $ adalah ....
A). $ \frac{3}{2}\sqrt{2} \, $ B). $ \frac{1}{3}\sqrt{2} \, $ C). $ \frac{2}{3}\sqrt{2} \, $ D). $ \frac{1}{3}\sqrt{41} \, $ E). $ \frac{3}{2}\sqrt{41} $
Nomor 4
Limas segiempat beraturan T.ABCD mempunyai tinggi sama dengan dua kali panjang sisi ABCD. Jika titik E berada pada garis BC dengan BE:EC=1:1 dan titik F berada pada garis TE dengan TF:FE=1:3, maka panjang proyeksi FE pada ABCD adalah .... kali sisi ABCD.
A). $ \frac{9}{8} \, $ B). $ \frac{5}{8} \, $ C). $ \frac{4}{8} \, $ D). $ \frac{3}{8} \, $ E). $ \frac{1}{8} $
Nomor 5
Semua nilai $ x \, $ yang memenuhi $|x+1| > x+3 \, $ dan $ \, |x+2| < 3 \, $ adalah ....
A). $ x < -2 \, $ B). $ -5 < x < -2 \, $
C). $ x > -5 \, $ D). $ -5 < x < 1 $
E). $ x > 1 $
Nomor 6
Diketahui suku banyak $ P(x) \, $ jika dibagi dengan $(x^2 - 2x) $ sisanya $ 2 - 3x \, $ dan jika dibagi $(x^2+x-2) \, $ sisanya $ x+ 2 $. Jika $P(x) $ dibagi dengan $(x^2-3x+2)$, maka sisanya adalah ....
A). $ x - 10 \, $ B). $ -x+10 \, $
C). $ -7x - 10 \, $ D). $ 7x-10 \, $
E). $ -7x+10 $
Nomor 7
Jika $ x_1 \, $ dan $ x_2 \, $ memenuhi persamaan $ (2\log x - 1) \frac{1}{{}^x \log 10} = \log 10 $ , maka $ x_1x_2 = .... $
A). $ 5\sqrt{10} \, $ B). $ 4\sqrt{10} \, $ C). $ 3\sqrt{10} \, $ D). $ 2\sqrt{10} \, $ E). $ \sqrt{10} $

Nomor 8
Diketahui $ x_1 \, $ dan $ x_2 \, $ merupakan akar-akar $ 4x^2-7x + p = 0 \, $ dengan $ x_1 < x_2 $. Jika $ {}^2 \log \left( \frac{1}{3}x_1 \right) = -2 - {}^2 \log x_2 $ , maka $ \, 4x_1 + x_2 = .... $
A). $ \frac{19}{4} \, $ B). $ 4 \, $ C). $ \frac{15}{4} \, $ D). $ \frac{13}{4} \, $ E). $ 3 $
Nomor 9
Diketahui $ 10, \, x_2, \, x_3, \, x_4 \, $ membentuk barisan geometri. Jika $ x_2 - 10, \, x_3 - 10 \, $ dan $ x_4-x_3-x_2-10 \, $ membentuk barisan aritmatika, maka nilai $ x_4 \, $ adalah ....
A). $ \frac{10}{27} \, $ B). $ \frac{5}{4} \, $ C). $ 80 \, $ D). $ 270 \, $ E). $ 640 $
Nomor 10
Jika $ a, \, 4, \, b \, $ adalah tiga suku berurutan dari barisan aritmatika dan $ a, \, 3, \, b \, $ merupakan tiga suku berurutan suatu barisan geometri, maka $ \frac{1}{a} + \frac{1}{b} = .... $
A). $ \frac{1}{4} \, $ B). $ \frac{1}{2} \, $ C). $ \frac{3}{4} \, $ D). $ \frac{8}{9} \, $ E). $ \frac{9}{8} $
Nomor 11
$ \displaystyle \lim_{x \to 3 } \frac{(x+6) \tan (2x -6)}{x^2 - x - 6} = ..... $
A). $ -\frac{18}{5} \, $ B). $ -\frac{9}{5} \, $ C). $ \frac{9}{5} \, $ D). $ \frac{18}{5} \, $ E). $ \frac{27}{5} $
Nomor 12
Jika fungsi $ g(x) = p\sqrt{x^2 - 4} \, $ naik pada $ \{ x \in R | x \leq -2 \} \, $ dan turun pada $ \{ x \in R | x \geq 2 \}$ , maka himpunan semua nilai $ p \, $ yang memenuhi adalah ....
A). $ \emptyset \, $
B). $ \{ p \in R | p \geq 2 \} \, $
C). $ \{ p \in R | p > 0 \} \, $
D). $ \{ p \in R | p < 0 \} \, $
E). $ \{ p \in R | p \leq -2 \} $
Nomor 13
Luas daerah yang dibatasi oleh kurva $ y = 2 \cos x , \, y = 1, \, $ sumbu X dan sumbu Y adalah ....
A). $ \frac{\pi}{6} + \int \limits_\frac{\pi}{3}^\frac{\pi}{2} \, 2 \cos x \, dx $
B). $ \frac{\pi}{3} + \int \limits_\frac{\pi}{6}^\frac{\pi}{2} \, 2 \cos x \, dx $
C). $ \frac{\pi}{3} + \int \limits_\frac{\pi}{3}^\frac{\pi}{2} \, 2 \cos x \, dx $
D). $ \frac{\pi}{2} + \int \limits_\frac{\pi}{3}^\frac{\pi}{2} \, 2 \cos x \, dx $
E). $ \frac{\pi}{2} + \int \limits_\frac{\pi}{6}^\frac{\pi}{2} \, 2 \cos x \, dx $
Nomor 14
Empat siswa laki-laki dan tiga siswa perempuan berdiri di dalam suatu barisan. Banyaknya cara agar ketiga siswa perempuan berdampingan di barisan tersebut adalah ....
A). $ 720 \, $ B). $ 360 \, $ C). $ 144 \, $ D). $ 72 \, $ E). $ 48 $
Nomor 15
Untuk suatu sudut $ x \, $ dan $ y \, $ berlaku
$ \sin ^2 x + \cos ^2 y = \frac{3}{2}a $
$ \cos ^2 x + \sin ^2 y = \frac{1}{2}a^2 $ .
Jumlah semua nilai $ a \, $ yang mungkin untuk sistem persamaan di atas adalah .....
A). $ -5 \, $ B). $ -4 \, $ C). $ -3 \, $ D). $ 3 \, $ E). $ 4 $



Tidak ada komentar:

Posting Komentar