Soal dan Pembahasan UTUL UGM 2017 Matematika IPA Kode 713


Nomor 1
Jika $ {}^3 \log x + {}^4 \log y^2 = 5 $, maka nilai maksimum dari $ {}^3 \log x . {}^2 \log y $ adalah ....
A). $ \frac{25}{4} \, $ B). $ \frac{25}{9} \, $ C). $ \frac{25}{16} \, $ D). $ 1 \, $ E). $ \frac{25}{36} $
Nomor 2
Dalam memilih pengurus kelas, terpilih 5 calon, 3 laki-laki dan 2 perempuan. Posisi yang tersedia yaitu ketua, wakil ketua, sekretaris, bendahara I, dan bendahara II. Jika ketua kelas harus laki-laki, maka banyak susunan pengurus yang mungkin adalah ....
A). $ 5 \, $ B). $ 24 \, $ C). $ 48 \, $ D). $ 72 \, $ E). $ 120 $
Nomor 3
Diketahui $ f(0)=1 $ dan $ f^\prime (0) = 2 $. Jika $ g(x) = \frac{1}{(2f(x)-1)^3} $ , maka $ g^\prime (0) = .... $
A). $ -12 \, $ B). $ -6 \, $ C). $ 6 \, $ D). $ 8 \, $ E). $ 12 $
Nomor 4
Jika akar-akar persamaan suku banyak $ x^3-12x^2+(p+4)x-(p+8)=0 $ membentuk deret aritmetika dengan beda 2, maka $ p - 36 = .... $
A). $ -2 \, $ B). $ 0 \, $ C). $ 4 \, $ D). $ 8 \, $ E). $ 12 \, $
Nomor 5
Titik pusat lingkaran L terletak di kuadran I dan terletak pada garis $ y = 2x + 1 $. Jika lingkaran L menyinggung sumbu Y di titik ($0,11$), maka persamaan lingakran L adalah ....
A). $ x^2 + y^2 - 5x - 11y = 0 \, $
B). $ x^2 + y^2 + 5x + 11y - 242 = 0 \, $
C). $ x^2 + y^2 - 10x - 22y + 121 = 0 \, $
D). $ x^2 + y^2 - 5x + 11y = 0 \, $
E). $ x^2 + y^2 + 10x + 22y - 363 = 0 \, $

Nomor 6
Jika daerah yang dibatasi oleh kurva $ y = x^2 $ dan garis $ y = (2m-2)x $ mempunyai luas $ 1\frac{1}{3} $ , maka $ m = .... $
A). $ 2\frac{1}{2} \, $ atau $ -\frac{1}{2} $
B). $ 2 \, $ atau $ 0 $
C). $ 3\frac{1}{2} \, $ atau $ -1\frac{1}{2} $
D). $ 4 \, $ atau $ -2 $
E). $ 4\frac{1}{2} \, $ atau $ -2\frac{1}{2} $
Nomor 7
Jika tiga bilangan berbeda $ x, y $ , dan $ z $ membentuk barisan geometri, maka $ \frac{1}{x-y} - \frac{1}{y-z} = .... $
A). $ \frac{1}{x} \, $ B). $ - \frac{1}{y} \, $ C). $ \frac{1}{z} \, $
D). $ \frac{1}{x+z} \, $ E). $ \frac{1}{x - z} $
Nomor 8
Semua nilai $ x $ yang memenuhi $ \sqrt{x^2 - 7x + 6 } \geq 2x \, $ adalah ....
A). $ -3 \leq x \leq \frac{1}{3} \, $
B). $ -3 \leq x \leq \frac{2}{3} \, $
C). $ x \leq -3 \, $ atau $ x \geq \frac{2}{3} $
D). $ x \leq 1 \, $ atau $ x \geq 6 $
E). $ x \leq \frac{2}{3} $
Nomor 9
$ \displaystyle \lim_{x \to -4} \frac{1 - \cos (x+4)}{x^2+8x+16} = .... $
A). $ -2 \, $ B). $ -\frac{1}{2} \, $ C). $ \frac{1}{3} \, $ D). $ \frac{1}{2} \, $ E). $ 2 $
Nomor 10
Himpunan penyelesaian pertidaksamaan $ {}^\frac{1}{2} \log (2x-1) + {}^\frac{1}{2} \log (2 - x) \geq 2 . {}^\frac{1}{2} \log x $ adalah ....
A). $ \frac{2}{3} \leq x \leq 1 \, $
B). $ x \leq \frac{2}{3} \, $ atau $ x \geq 1 $
C). $ \frac{1}{2} < x \leq \frac{2}{3} \, $ atau $ 1 \leq x < 2 $
D). $ \frac{1}{2} \leq x \leq \frac{2}{3} \, $ atau $ 1 \leq x \leq 2 $
E). $ x \leq \frac{1}{2} \, $ atau $ x > 2 $

Nomor 11
Jika panjang vektor $ \vec{u}, \vec{v}, $ dan $ (\vec{u}+\vec{v}) $ berturut-turut 12, 8, dan $ 4\sqrt{7} $, maka besar sudut antara $ \vec{u} $ dan $ \vec{v} $ adalah ....
A). $ 45^\circ \, $ B). $ 60^\circ \, $ C). $ 90^\circ \, $ D). $ 120^\circ \, $ E). $ 150^\circ $
Nomor 12
Jika proyeksi $ \vec{u} = (6,1) \, $ pada $ \vec{p} = (1,1) $ sama dengan proyeksi $ \vec{v}=(\alpha , 5) $ pada $ \vec{p} $ , maka nilai $ \alpha $ yang memenuhi adalah ....
A). $ -12 \, $ B). $ -2 \, $ C). $ 2 \, $ D). $ 5 \, $ E). $ 12 $
Nomor 13
Misalkan $ x_1 $ dan $ x_2 $ merupakan akar-akar persamaan $ px^2 + qx - 1 = 0 , p \neq 0 $. Jika $ \frac{1}{x_1}+\frac{1}{x_2} = -1 $ dan $ x_1 = -\frac{3}{2}x_2 $, maka $ p + q = .... $
A). $ -7 \, $ B). $ -5 \, $ C). $ 0 \, $ D). $ 5 \, $ E). $ 7 $
Nomor 14
Diketahui kubus ABCD.EFGH. Jika $ \alpha $ adalah sudut antara bidang AHF dan CHF, maka $ \sin \alpha = .... $
A). $ -\frac{2}{3}\sqrt{2} \, $ B). $ -\frac{1}{3}\sqrt{2} \, $ C). $ \frac{1}{3} \, $ D). $ \frac{1}{3}\sqrt{2} \, $ E). $ \frac{2}{3}\sqrt{2} $
Nomor 15
Dektahui $ 0 \leq x < \frac{\pi}{2} $. Jika $ 5\sin 2x + 10\cos ^2 x = 26 \cos 2x $ , maka $ \cos 2x = .... $
A). $ \frac{215}{233} \, $ B). $ \frac{205}{233} \, $ C). $ \frac{169}{233} \, $ D). $ \frac{115}{233} \, $ E). $ \frac{105}{233} $

Tidak ada komentar:

Posting Komentar